UP主: 封面: 简介:本视频为搬运的 2025春季 斯坦福大学 CS231n: Deep Learning for Computer Vision 公开课 (全18讲)主讲人:Fei-Fei Li、Ehsan Adeli、Justin Johnson、Zane Durante(斯...
视频选集 Lecture 1 导论 (Introduction) Lecture 2 线性分类器进行图像分类 (Image Classification with Linear Classifiers) Lecture 3 正则化与优化 (Regularization and Optimization) Lecture 4 神经网络与反向传播 (Neural Networks and Backpropagation) Lecture 5 基于CNN的图像分类 (Image Classification with CNNs) Lecture 6 CNN架构 (CNN Architectures) Lecture 7 循环神经网络 (Recurrent Neural Networks) Lecture 8 注意力机制与Transformer (Attention and Transformers) Lecture 9 目标检测、图像分割与可视化 (Object Detection, Image Segmentation, Visualizing) Lecture 10 视频理解 (Video Understanding) Lecture 11 大规模分布式训练 (Large Scale Distributed Training) Lecture 12 自监督学习 (Self-Supervised Learning) Lecture 13 生成模型(一)(Generative Models 1) Lecture 14 生成模型(二)(Generative Models 2) Lecture 15 三维视觉 (3D Vision) Lecture 16 视觉与语言 (Vision and Language) Lecture 17 机器人学习 (Robot Learning) Lecture 18 以人为本的人工智能 (Human-Centered AI)